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Abstract

The buoyancy-driven magnetohydrodynamic flow in a liquid-metal filled cubic enclosure with internal heat gen-

eration was investigated by three-dimensional numerical simulation. The enclosure was volumetrically heated by a

uniform power density and was cooled along two opposite vertical walls, all other walls being adiabatic. A uniform

magnetic field was applied orthogonally to the gravity vector and to the temperature gradient (i.e., parallel to the

isothermal walls). The Prandtl number was 0.0321 (characteristic of Pb–17Li at 573 K); the Rayleigh number was made

to vary from 105 to 107, the Hartmann number between 102 and 103 and the electrical conductance of the walls between

0 and infinity. The Navier–Stokes equations, in conjunction with a scalar transport equation for the fluid’s enthalpy and

with the Poisson equation for the electrical potential, were solved by a finite volume method using the CFD package

CFX-4 with some necessary adaptations. Steady-state conditions were assumed. In all cases, a three-dimensional flow

with complex secondary motions and a complex current pattern was established. The effects of Hartmann number, wall

conductance ratio and Rayleigh number were discussed and results were compared with those previously obtained for

fully developed flow in an infinitely tall, internally heated channel of square cross-section. The related case of a dif-

ferentially heated cubic enclosure is discussed in a companion paper. � 2002 Published by Elsevier Science Ltd.

1. Introduction and previous work

Within the separated-cooled concept for the liquid-

metal breeder blanket of a power fusion reactor [1], the

problem arises of understanding and characterizing

buoyant flows in a low Prandtl number fluid under the

influence of a strong magnetic field.

In a previous paper [2], a general computational

approach to MHD problems using an advanced CFD

package with some necessary modifications was de-

scribed. The method was validated against asymptotic

results [3] for the case of fully developed buoyant flow

induced by differential heating at two opposite walls or

by internal heat generation. The use of a general purpose

package in MHD modelling opens the possibility of

numerical simulations being performed for complex

geometries of direct engineering interest.

A companion paper [4] describes the application of the

above general approach toMHD buoyant flow in a cubic

enclosure with differential heating at two of the walls, the

remaining four walls being adiabatic. In the present

work, the study is extended to the case of a cubic enclo-

sure with volumetric power generation (internal heating).

2. Model and computational methods

The configuration studied here (cubic enclosure of

side length D with gravity vector, magnetic field, and

temperature gradient orthogonal to one another and to

the walls) is sketched in Fig. 1(a). The temperature

gradient is due to internal heating in the presence of

two opposite cold walls at x ¼ �0:5 and thus is directed

along x. The magnetic field is directed along y.

The Rayleigh number is defined here as

Ra ¼ gbqD5=ðkmaÞ ð1Þ
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in which b; k; m and a are the fluid’s thermal expansion

coefficient, thermal conductivity, kinematic viscosity,

and thermal diffusivity, respectively. The Hartmann

number is defined as

M ¼ DBðr=lÞ1=2 ð2Þ

in which r; q and l ¼ qm are the fluid’s electrical

conductivity, density, and viscosity. It can be shown that

M2 represents the ratio of electromagnetic to viscous

forces.

The walls normal to the magnetic field are called

Hartmann walls. In the associated boundary layers, the

Nomenclature

B ðBÞ magnetic induction vector (module)

(T)

cw wall conductance ratio, ðrwtwÞ=ðrDÞ
(dimensionless)

D side length of the enclosure (m)

g ðgÞ gravity acceleration vector (module)

ðm s�2Þ
j ðjÞ current density vector (module)

normalized by j0 ¼ ru0B (dimensionless)

M Hartmann number, DBðr=lÞ1=2
(dimensionless)

Nu1 first Nusselt number for internal heating,

1/Tmax (dimensionless)

Nu2 second Nusselt number for internal

heating, (2/3)/hT i (dimensionless)

p pressure normalized by Dj0B
(dimensionless)

Pr Prandtl number, m=a (dimensionless)

q power density (W m�3)

q00 heat flux (W m�2)

Ra Rayleigh number for internal heating,

gbqD5=ðkmaÞ (dimensionless)

Rem magnetic Reynolds number, u0Drg
(dimensionless)

tw wall thickness (m)

T dimensionless temperature, ð#� #wÞ=#c

(dimensionless)

u0 velocity scale, ða=DÞðRa=M2Þ (m s�1)

v ðu; v;wÞ velocity vector (components) normalized

by u0 (dimensionless)

x; y; z co-ordinates normalized by D

(dimensionless)

Greek symbols

a thermal diffusivity ðm2 s�1Þ
b thermal expansion coefficient ðK�1Þ
dH; dS thickness of the Hartmann and side layers

normalized by D (dimensionless)

g magnetic permeability (X s m�1)

# temperature (K)

#c conductive temperature, ðqD2Þ=ð8kÞ (K)

u electrical potential normalized by Du0B
(dimensionless)

k thermal conductivity ðW m�1 K�1Þ
l viscosity (N s m�2)

m kinematic viscosity ðm2 s�1Þ
q density ðkg m�3Þ
r electrical conductivity ðX mÞ�1

Subscripts

H Hartmann layer

S side layer

w wall

Fig. 1. (a) Sketch of the three-dimensional cubic enclosure; (b) computational grid.
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velocity profile is basically determined by a balance be-

tween Lorentz and viscous forces, and their thickness dH

scales asM�1. The walls parallel to the magnetic field are

called the side walls, and the associated boundary layers

are called side layers; their thickness dS scales as M�1=2

[5].

Under the assumption of a low magnetic Reynolds

number Rem ¼ u0Drg (in whichu0 ¼ ða=DÞðRa=M2Þ is a

characteristic velocity and g is the fluid’s magnetic per-

meability), the induced magnetic field is negligible with

respect to the applied field B. Such an inductionless flow

is governed by the Navier–Stokes equations with the

Lorentz force J	 B added to the RHS. By using the

Boussinesq approximation for buoyancy, assuming

steady-state conditions and making all terms dimen-

sionless as discussed below, these become

Gr
M4

v 
 rð Þv ¼ �rp þ 1

M2
r2vþ j	 ŷy þ 1

8
T ẑz ð3Þ

and are complemented by the continuity equation

r 
 v ¼ 0: ð4Þ

The velocity vector v ¼ ðu; v;wÞ and the current

density j are scaled, respectively, by u0 and by j0 ¼ rv0B.
The dimensionless pressure p is the difference between

the local and the hydrostatic pressure, scaled by Dj0B.
The dimensionless temperature T is the difference be-

tween the local temperature # and the temperature of

the cold (i.e., thermally active) walls, divided by the

temperature scale (conductive temperature maximum)

#c ¼ qD2=8k.
The current density is given by Ohm’s law

j ¼ �ru þ v	 ŷy ð5Þ

together with the conservation of the electric charge

r 
 j ¼ 0: ð6Þ

The electrical potential u is scaled by Du0B. From Eqs.

(5) and (6) a Poisson equation for u is derived

r2u ¼ ðr 	 vÞŷy: ð7Þ

The temperature distribution is governed by the

enthalpy transport equation

Peðv 
 rÞT ¼ 1

M2
r2T þ 8; ð8Þ

where Pe ¼ Ra=M2 is the P�eeclet number. Note that the

term 8 on the RHS accounts for internal heating and is

not present in the case of a differentially heated cavity

[4].

The boundary conditions for velocity are the usual

no-slip conditions at the walls (see below, however, for

the treatment of walls orthogonal to the magnetic field),

while the thermal boundary conditions are

T ¼ 0 for x ¼ �0:5; ð9aÞ

oT=oy ¼ 0 for y ¼ �0:5; ð9bÞ

oT=oz ¼ 0 for z ¼ �0:5: ð9cÞ

The purely conductive solution is T ¼ 1� 4x2.
The electrical boundary conditions are simply those

expressing the continuity of electrical potential u and

electrical current j ¼ �rru at the fluid–wall interface.

In the special case of plane walls (as in the present ex-

ample), by integration across the wall thickness tw these

can be reduced to the thin wall condition [6] expressing

the conservation of electric charge in the plane of the

wall

j 
 n ¼ cwr2
whui ð10Þ

in which hui is the mean value of u across the wall, n is

the inward-directed unity vector normal to the wall and

r2
w is the two-dimensional Laplace operator in the plane

of the wall. The constant cw is the wall conductance

ratio, rwtw=rD.
The governing equations (3), (4) and (7), (8), with the

boundary conditions discussed above, were solved by a

finite volume technique using the SIMPLEC pressure–

velocity coupling algorithm [7] and the QUICK third-

order discretization scheme for the advection terms. The

CFD package CFX-4 [8] was used for the simulations,

but some adaptations were required [9] since CFX-4

does not explicitly provide for MHD problems. In par-

ticular, the electrical potential equation was solved by

using the elliptic solvers normally adopted in CFX-4 for

the solution of scalar transport equations, appropriately

modified so as not to include convection terms. This

allowed the problem to be treated as a fully implicit fluid

dynamics – scalar transport problem, without any ex-

plicit ‘‘outer’’ coupling between hydrodynamic and

electrical quantities.

The resolution of the Hartmann layer was omitted by

integrating analytically all equations across it as sug-

gested by Leboucher [10]. Coherently, the dimensionless

wall conductance cw at the Hartmann walls was replaced

by cw þ dH, being dH ¼ M�1 the conductance of the fluid

layer. Near these walls, the first grid point in the fluid lay

outside of the Hartmann layer, and the no-slip condition

was replaced by a free slip condition (linear extrapola-

tion of the velocity at the wall from the inner grid

points).

As mentioned for the case of a differentially heated

enclosure [4], the above model could easily be extended

to more complex geometries, including the case of solid

walls arbitrarily oriented with respect to the magnetic

field. However, in this case the local wall conductance

ratio should be written as cw þ ðMnŷyÞ�1
, according to

the local thickness of the Hartmann layer along the wall

surface [11].

In the MHD simulations reported here, a grid of

nx 	 ny 	 nz ¼ 90	 24	 90 ¼ 194,400 nodes was used,
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with a non-equispaced distribution in the directions x

and z orthogonal to the magnetic field, Fig. 1(b). The

magnetic field direction y was resolved by a compara-

tively smaller number of points since the above-men-

tioned integral model was adopted for the Hartmann

layers. Some simulations with no MHD effects were also

(a)

(b)

(c)

Fig. 2. Base flow (no MHD) for Ra ¼ 105. Velocities are scaled as for M ¼ 100. (a) Velocity vector plot in the plane y ¼ 0; the (di-

mensionless) unity vector is shown. (b) Contours of the v velocity in the plane y ¼ �0:2. Solid line: negative velocity; broken line:

positive velocity; thick line: zero. (c) Contours of the vertical w velocity in the midplane z¼ 0. Solid line: upward flow; broken line:

downward flow; thick line: zero.
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performed; for these cases, a non-equispaced grid with

nx 	 ny 	 nz ¼ 60	 60	 60 ¼ 216,000 nodes was used.

1500 iterations at most were needed for a complete

convergence of all variables; the convergence speed was

thus higher than for the quasi-2D, fully developed,

problem [2] and was only slightly affected by the con-

ductivity of the walls, the Rayleigh number, or the

Hartmann number. All simulations were run on a Pen-

tium III-500 MHz computer with 256 Mbytes RAM;

each test case typically required 
40 h of CPU time.

3. Base flow in the absence of MHD interactions

The buoyant flow in enclosures with internal heat

generation has been studied for many years in different

contexts ranging from plate tectonics to nuclear safety.

Theoretical and experimental results have been re-

viewed, among others, by Kulacki and Richards [12].

For square enclosures and low Prandtl numbers

ðPr ¼ 0:0321Þ, two-dimensional direct simulations have

recently been presented by Arcidiacono et al. [13] in the

range Ra � 104–108. Their results indicate that the flow

is steady and bilaterally symmetric up to Ra � 3	 105; a

pitchfork bifurcation, with spatial symmetry breaking,

occurs at 3	 105 < Ra < 106, a Hopf bifurcation to

periodic flow at 106 < Ra < 2	 106, and a final tran-

sition to chaotic flow at 2	 106 < Ra < 3	 106.

For cubic enclosures, three-dimensional effects must

be taken into account. In the case of differential heating,

Davis [14] argued that the interaction of the main cir-

culation roll with the side walls should give rise to a

secondary flow with a velocity component parallel to the

roll axis. Mallinson and de Vahl Davis [15] presented 3-

D finite-difference numerical simulations for different

aspect ratios, Prandtl numbers ranging from 0.2 to 100

and Rayleigh numbers ranging from 104 to 105. For an

enclosure of aspect ratios 1:2:1 (x:y:z, see axis nomen-

clature in Fig. 1), they predicted characteristic toroidal

circulation cells with the flow moving inward, i.e. toward

the midplane y ¼ 0, in the centre and outward, i.e., to-

ward the side walls, at the periphery. A similar three-

dimensional flow pattern was experimentally confirmed

by the flow visualization studies of Hiller et al. [16],

based on thermochromic liquid crystals suspended in

water–glycerol mixtures filling a cubic enclosure

ðPr ¼ 5:8–6000;Ra ¼ 104–2	 107Þ.
For internally heated two-dimensional enclosures, at

sufficiently low Rayleigh number the base flow presents

a central rising plume and two symmetric recirculation

rolls. No previous detailed three-dimensional studies

have been presented in the literature; however, by

analogy with differentially heated enclosures [4], one

may expect that two toroidal secondary flows will de-

velop close to each side wall, with the fluid moving in-

ward in the central regions of the main recirculation

rolls and outward along the periphery.

These expectations are fully confirmed by the present

simulations. Fig. 2 reports predictions obtained for

Ra ¼ 105. Fig. 2(a) is a vector plot of the main circula-

tion in the midplane y ¼ 0, showing a central rising

plume, descending boundary layers along the cold ver-

tical walls and two symmetric recirculation rolls. Fig.

2(b) reports contours of the v velocity in the plane

y ¼ �0:2; two symmetric toroidal cells can be clearly

recognized, with fluid moving inward (from the side wall

at y ¼ �0:5 to the midplane at y ¼ 0) near the centres of

the main circulation rolls and moving outward in the

peripheral region of each roll. Fig. 2(c) reports contours

of the vertical velocity w in the midplane z ¼ 0; these

show that the main buoyant flow is fairly two-dimen-

sional along the central half of the enclosure span, while

end effects due to the influence of the side walls become

significant only for jyj J 0:25.

(a) (b)

Fig. 3. Heat transfer for Ra ¼ 105, base flow (no MHD). (a) Temperature in the midplane y ¼ 0. (b) Normalized wall heat flux q00=hq00i
on a cold wall.
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Some features of the thermal field in the cubic en-

closure for the same Rayleigh number ð105Þ and no

MHD effects are illustrated in Fig. 3. Graph (a) shows

the isotherms in the midplane y ¼ 0; at the present low

Ra only a moderate amount of vertical stratification is

present, and is confined to the upper half of the

(a)

(b)

(c)

Fig. 4. MHD flow for Ra ¼ 105; M ¼ 100; cw ! 1: (a) Velocity vector plot in the plane y ¼ 0; the (dimensionless) unity vector is

shown. (b) Contours of the v velocity in the plane y ¼ �0:2. Solid line: negative velocity; broken line: positive velocity; thick line: zero.

(c) Contours of the vertical w velocity in the midplane z ¼ 0. Solid line: upward flow; broken line: downward flow; thick line: zero.

1498 I. Di Piazza, M. Ciofalo / International Journal of Heat and Mass Transfer 45 (2002) 1493–1511



enclosure; in the bottom half and in the regions close to

the cold walls the thermal stratification is mainly hori-

zontal, showing that most of the heat is transferred by

conduction in the liquid metal. Fig. 3(b) reports con-

tours of the wall heat flux (normalized by its mean value

qD=2) along one of the cold walls; peak values of 
1.4

are attained in the upper region of the wall while values

below 
0.7 are attained in the bottom half. Three-di-

mensional effects can be seen to regard only the end

regions close to the side walls.

(a) (b)

Fig. 6. Total current j in the midplane z ¼ 0 for cw ¼ 0:01; Ra ¼ 105. The unity (dimensionless) vector is shown above each plot.

(a) M ¼ 100; (b) M ¼ 1000.

(a) (b)

Fig. 5. Heat transfer for Ra ¼ 105; M ¼ 100; cw ! 1. (a) Temperature in the midplane y ¼ 0. (b) Normalized wall heat flux q00=hq00i
on a cold wall.
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Three-dimensionality should also be carefully con-

sidered for its influence on flow regime stability and

transitions. Again, the case of internally heated enclo-

sures is poorly documented in the literature. For dif-

ferentially heated enclosures, three-dimensional

numerical simulations were presented by Janssen et al.

[17] with Pr ¼ 0:71 (gases) and Ra ranging from 105 to

108. Instability mechanisms, leading from steady-state

to time-periodic and chaotic flow, and corresponding

dominating frequencies, were found to be similar to

those found in 2-D studies; transition to periodic flow

was predicted for Ra ¼ 2:3	 106, 
10% higher than for

a corresponding 2-D enclosure. On the other hand,

Henkes and Le Qu�eer�ee [18] conducted three-dimensional

numerical simulations for a cavity of vertical aspect

ratio 1 at Pr ¼ 0:71 and Ra ranging from 
106 to 
108

using a spectral method with up to 109	 109 Cheby-

shev modes in the vertical planes normal to the iso-

thermal walls and nine Fourier modes along the depth,

where periodic boundary conditions were enforced. For

perfectly conducting horizontal walls, at Ra ¼ 1:8	 106

the base steady solution was unstable to three-dimen-

sional temperature perturbations having a wavelength

of the order of D, while at the same Ra the solution was

stable with respect to two-dimensional perturbations.

When horizontal adiabatic walls were imposed, the

critical Rayleigh numbers increased by almost two or-

ders of magnitude, but also in this case three-dimen-

sional perturbations turned out to be the most

unstable.

These last results suggest that the critical Rayleigh

numbers for transition to asymmetric, unsteady or

chaotic solutions obtained by two-dimensional nu-

merical simulations [13] may require significant cor-

(a) (b)

(c) (d)

Fig. 7. Velocity vectors in the midplane y ¼ 0 for cw ¼ 0:01; Ra ¼ 105. The unity (dimensionless) vector is shown above each plot.

(a) M ¼ 100; (b) M ¼ 200; (c) M ¼ 500; (d) M ¼ 1000.
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rections for three-dimensional enclosures. However, the

reference Rayleigh number for which the present base

flow was computed (105) is sufficiently low for the flow

to be assumed with confidence to be steady and bi-

laterally symmetric not only in 2-D, but also in 3-D

enclosures.

(a) (b)

Fig. 8. Velocity (a) and temperature (b) profiles along the x axis for cw ¼ 0:01; Ra ¼ 105. Velocities for ‘‘no MHD’’ are scaled as for

M ¼ 100.

(a) (b)

(c) (d)

Fig. 9. Dimensionless temperature in the midplane y ¼ 0 for cw ¼ 0:01; Ra ¼ 105. (a) M ¼ 100; (b) M ¼ 200; (c) M ¼ 500; (d)

M ¼ 1000.
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4. MHD free convection flow

4.1. Review of the literature

A recent review of published results for convective

magnetohydrodynamic flows in ducts and cavities was

given by M€uuller and B€uuhler [19]. No computational

work appears to have been presented on buoyant flows

due to internal heat generation in fully three-dimen-

sional configurations. B€uuhler [3] developed an asymp-

totic analysis for the MHD flow in a vertical rectangular

duct, taking both differential heating and internal heat-

ing into consideration; but only for fully developed

conditions in which convection plays essentially no role.

Di Piazza and B€uuhler [2] studied the same configurations

by the present numerical approach, based on the CFX-4

code [8], and were able to reproduce well the analytical

results derived in [3].

In cubic enclosures, in contrast with the fully devel-

oped flow problem, convective terms are important and

a fully three-dimensional flow occurs; exact solutions do

not exist and neither numerical nor experimental results

have been presented in the literature, so that the present

computations can only be judged on the basis of phys-

ical coherence and by analogy with related configura-

tions.

4.2. The case Ra ¼ 105;M ¼ 100; cw ¼ 1 (perfectly

conducting walls)

Typical MHD results will be shown here for a Ray-

leigh number of 105, a Hartmann number of 100 and

perfectly conducting cavity walls ðcw ! 1Þ.
Fig. 4 illustrates some features of the flow field, and

can be compared with Fig. 2 relative to the case with no

MHD (in which velocities were scaled based onM ¼ 100

for ease of comparison). The main circulation, see vector

plot for the midplane y ¼ 0 in Fig. 4(a), is characterized

by peak velocities 3–4 times lower than in the base flow,

and mainly consists of a peripheral belt of moving fluid,

attached to the cavity walls and surrounding a core re-

gion where the fluid flows slowly upward. The rounded

circulation cells characterizing the base flow, Fig. 2(a),

are completely absent here.

(a) (b)

(c) (d)

Fig. 10. Distribution of q00=hq00i in the plane y ¼ 0 for cw ¼ 0:01; Ra ¼ 105. (a) M ¼ 100; (b) M ¼ 200; (c) M ¼ 500; (d) M ¼ 1000.
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Contours of the v velocity component in the plane

y ¼ �0:2 are shown in Fig. 4(b). The toroidal cells of

secondary circulation discussed for the base flow, Fig.

2(b), are absent here; secondary circulation normal to

the constant-y planes is confined to the four corner re-

gions of the enclosure.

The spanwise variation of the main (vertical) velocity

component w is illustrated in Fig. 4(c). It can be ob-

served that the null-w lines are almost straight along the

spanwise y direction, indicating an almost 2-D flow

which is little affected by the end (Hartmann) walls at

y ¼ �0:5. This contrasts with the more marked spanwise

variation exhibited by the base flow, Fig. 2(c), and shows

that the effect of MHD interactions is to align vorticity

with the magnetic field direction thus increasing the two-

dimensionality of the flow.

The thermal field in the midplane y ¼ 0 is shown for

the present MHD case in Fig. 5(a); by comparison with

the base flow results in Fig. 3(a), it can be observed that

the temperature distribution is now much closer to the

purely conductive one, with little vertical stratification.

Vertical convection leads to the appearance of a top

central region where the temperature markedly exceeds

the purely conductive value (dimensionless T > 1), as

observed in square cavities without MHD at much lower

Rayleigh numbers [13]. The distribution of the wall heat

flux on one of the active (cold) walls is shown in Fig.

5(b); q00 is normalized by its mean value qD/2. The dis-

tribution is considerably flatter than in the base flow,

Fig. 3(b), with peak values of just 
1.15 in the top re-

gion of the wall.

4.3. The effect of the Hartmann number M

For a given value of the Rayleigh number ðRa ¼ 105Þ
and of the wall conductance ratio ðcw ¼ 10�2Þ, the

Hartmann number M was made to vary in order to

clarify its influence on fluid flow and heat transfer.

Vector plots of the total current j in the midplane

z ¼ 0 are shown in Fig. 6 for M ¼ 100 and 1000. The

general pattern is similar for the two values of M, with

side layer current jets parallel to the walls. The reason

for these jets is that the conductance of the side layer

(which scales as M�1=2) is larger than the wall conduc-

tance cw even for the higher value of the Hartmann

number considered here ðM ¼ 1000Þ; only when the wall

(a) (b)

Fig. 11. Total current j in the midplane z ¼ 0 for M ¼ 100; Ra ¼ 105. The unity (dimensionless) vector is shown above each plot.

(a) cw ¼ 0; (b) cw ! 1.
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conductance ratio becomes larger than the layer con-

ductance, i.e. for higher M or lower cw, current jets are
no more present.

Fig. 7 shows velocity vector plots in the midplane

y ¼ 0 for M ¼ 100, 200, 500, 1000 (a)–(d). The corre-

sponding results for the purely hydrodynamic case (no

MHD) were shown in Fig. 2(a). Each plot is scaled with

its own scale u0 ¼ ða=DÞ 
 ðRa=M2Þ. A remarkable

damping effect can be observed as M increases, since

velocities remain of the same order despite the fact that

the velocity scale is much lower for high Hartmann

numbers. Furthermore, the squareness of the circulation

cells increase, and the thickness of the side boundary

layers decreases as the Hartmann number increases.

Magnetic damping effects are also illustrated by the

vertical velocity profiles along the x axis shown in Fig.

8(a) for M ¼ 100–1000. Fig. 8(b) reports the dimen-

sionless temperature profiles along the same axis; for

the lower Hartmann numbers and for the purely hy-

drodynamic case, the presence of a vertical stratifica-

tion keeps the maximum value of the distribution

significantly lower than unity, whereas the T profile

approaches the purely conductive parabolic distribution

for M ¼ 1000.

The influence of M on the temperature distribution is

also evidenced in Fig. 9, where the isotherms in the

midplane y ¼ 0 are shown for M ¼ 100–1000. Results

for the case with no MHD interactions were reported in

(a) (b)

(c) (d)

Fig. 12. Velocity vectors in the midplane y ¼ 0 for M ¼ 100; Ra ¼ 105. The unity (dimensionless) vector is shown above each plot.

(a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; (d) cw ¼ 1.
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Fig. 3(a). For the higher values of M, (c) and (d), con-

vection plays a minor role, and the distribution is mainly

conductive with purely horizontal thermal stratification.

The suppression of convection can also be observed

in the maps of the average heat flux on a cooling wall

reported in Fig. 10. The maximum of 
1.5 attained in

(a) (b)

(c) (d)

Fig. 14. Dimensionless temperature in the midplane y ¼ 0 for M ¼ 100; Ra ¼ 105. (a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; d) cw ¼ 1.

(a) (b)

Fig. 13. Dimensionless velocity (a) and temperature (b) profiles along the x axis for M ¼ 100; Ra ¼ 105. Velocities for ‘‘no MHD’’ are

scaled as for M ¼ 100.
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the purely hydrodynamic case, Fig. 3(b), and basically

due to the impingement of the turning boundary layer

on the vertical cold wall, is greatly reduced, and the

distribution of q00 becomes more uniform, as the Hart-

mann number increases (graphs ((a) to (d)).

4.4. The effect of the wall conductance ratio cw

For differentially heated enclosures, previous studies

[4,20] have shown that the wall conductance ratio plays

a major role in determining the current distribution, the

flow patterns and the heat transfer characteristics. For

internally heated enclosures, a similar major influence

was observed in fully developed buoyant flows [2].

A vector plot of the current density j in the horizontal

midplane z ¼ 0 of the cubic enclosure is shown in Fig. 11

for M ¼ 100;Ra ¼ 105, and insulating ðcw ¼ 0Þ or per-

fectly conducting ðcw ! 1Þ walls. For non-conducting

walls, graph (a), high currents flow through the side

layers, parallel to B, as already observed in the fully

developed study [2]. This pattern is observed up to

cw � 0:01. For well conducting walls, graph (b), currents

exit orthogonally from the right regions of the Hart-

mann walls, describe a 180� turn in the fluid domain and

enter again the Hartmann walls on the left side. This

pattern is observed for cw P 0:1.
Fig. 12 reports velocity vector plots in the midplane

y ¼ 0 orthogonal to the magnetic field B; the horizontal

arrow reported above each graph represents the (di-

mensionless) unity velocity vector. The magnetic field

causes an increasing suppression of the flow in the centre

of the cavity for increasing wall conductance ratio

(graphs (a)–(d)), as compared with the case without

MHD interactions in Fig. 2(a). As in the differentially

heated enclosures, the increasing Lorentz forces (from

graph (a) to (d)) give rise to an increasingly square shape

of the circulation pattern.

Fig. 13(a) reports profiles of the vertical velocity w

along the x axis. It can be observed that the base third-

order polynomial profile of w, derived analytically for

(a) (b)

(c) (d)

Fig. 15. Distribution of q00=hq00i on a cooling wall for M ¼ 100; Ra ¼ 105. Velocities for ‘‘no MHD’’ are scaled as for M ¼ 100.

(a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; (d) cw ¼ 1.
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(a) (b)

(c)

Fig. 17. Velocity vectors in the midplane y ¼ 0 for cw ¼ 0:01; M ¼ 100: The unity (dimensionless) vector is shown close to each plot.

Different scales are used for (a), (b), (c). (a) Ra ¼ 105; (b) Ra ¼ 106; (c) Ra ¼ 107.

(a) (b)

Fig. 16. Dimensionless w velocity (a) and temperature (b) profiles along the x axis for M ¼ 100; cw ¼ 0:01 and three values of the

Rayleigh number ðRa ¼ 105; 106; 107Þ.
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infinitely slender enclosures [9] in the absence of MHD

effects, is almost preserved for the lower values of cw,
while, for higher cw, profiles of w become almost flat in

the core region due to the strong Lorentz forces. Con-

versely, the temperature profiles in Fig. 13(b) show that

the purely conductive parabolic distribution is still pre-

served for well conducting walls, while convection is

stronger for poorly conducting walls, and a progressive

reduction of the temperature maximum occurs. This

effect can be also observed in the temperature fields

shown in Fig. 14 for the midplane y ¼ 0: for the higher

values of cw (graphs (c) and (d)) vertical thermal strati-

fication is almost absent, and the dominant horizontal T

gradient indicates a quasi-conductive solution. For the

lower cw (graphs (a) and (b)) the solution is closer to that

obtained without MHD interactions, Fig. 3(a), with a

stronger vertical stratification at least in the upper re-

gion of the enclosure.

Fig. 15 shows the heat flux distribution on one of the

cold walls; q00 is normalized by its mean value qD=2. The
distribution tends to be flatter and more top/down

symmetric for increasing cw, as magnetic interactions

become stronger.

4.5. The effect of the Rayleigh number Ra

For fixed values of the Hartmann number ðM ¼ 100Þ
and of the wall conductance ratio ðcw ¼ 0:01Þ, the

Rayleigh number was made to vary from 105 to 107. It

should be observed that two-dimensional direct simu-

lations conducted for an internally heated square cavity

in the absence of MHD effects [13] gave steady but

asymmetric flow for Ra ¼ 106, and chaotic flow for

Ra ¼ 107. However, the damping effects of the magnetic

field at M ¼ 100 seem to be sufficient to stabilize steady

symmetric free convection flow at these values of the

Rayleigh number; the present simulations, conducted by

imposing steady-state conditions and including the

whole cubic enclosure, neither exhibited convergence

problems nor any tendency to break the flow symmetry.

Fig. 16 reports profiles of dimensionless vertical

velocity w (a) and temperature T (b) along the x axis for

(a) (b)

(c)

Fig. 18. Dimensionless temperature fields in the midplane y ¼ 0 for cw ¼ 0:01; M ¼ 100 and different values of the Rayleigh number.

(a) Ra ¼ 105; (b) Ra ¼ 106; (c) Ra ¼ 107.
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the three values of Ra investigated. The strong decrease

of w with increasing Ra suggests that the scale adopted

here for velocity, u0 ¼ ða=DÞðRa=M2Þ, is not really suit-

able when convective transport becomes dominant; in

fact, velocities scale better with Ra1=2 rather than with

Ra. The third-order polynomial profile of w, still rec-

ognizable for Ra ¼ 105, is progressively lost as the cen-

tral rising plume and the near-wall downcoming

boundary layers become increasingly de-coupled. Fig. 17

shows velocity vector plots in the midplane y ¼ 0 for

Ra ¼ 105–107; as Ra increases, convection becomes in-

creasingly confined to thin near-wall boundary layers

and the centres of the circulation cells move downwards.

The temperature maximum is reduced for the higher

values of Ra, as shown in Fig. 16(b); furthermore, the

shape of the T profile is strongly modified and a relative

minimum appears about the midplane x ¼ 0. The im-

portance of convection and thermal mixing at high Ra,
despite the damping effect of magnetohydrodynamics, is

also evidenced in Fig. 18, which reports temperature

contour plots in the midplane y ¼ 0. For the higher Ra

(graphs (b) and (c)) the isotherms are strongly distorted

by convection, which explains the relative minimum

present in the midline temperature distribution of Fig.

16(b).

Finally, the distribution of the normalized heat flux

on a cooling wall is shown in Fig. 19. A maximum of

heat transfer can be observed in the top region, where

the downcoming side boundary layer begins to develop;

this maximum is exalted for the higher Ra.
The resulting Nusselt numbers for the cases under

consideration increase with Ra, and are summarised in

Table 1. Following our previous work on 2-D enclosures

with internal heat generation [13], Nu1 and Nu2 are de-

fined as 1=Tmax and ð2=3Þ=hT i, respectively, so that they

are both unity for a purely conductive temperature dis-

tribution and otherwise express the relative importance

of convection with respect to conduction. The convec-

tion-driven accumulation of hot fluid against the top

wall of the enclosure is responsible for the Nusselt

number Nu1 < 1, obtained at the lowest Rayleigh num-

ber. Despite MHD flow damping effects, the Nusselt

(a) (b)

(c)

Fig. 19. Distribution of q00=hq00i on a cooling wall for cw ¼ 0:01; M ¼ 100 and different values of the Rayleigh number. (a) Ra ¼ 105;

(b) Ra ¼ 106; (c) Ra ¼ 107.
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numbers computed for Ra ¼ 107 (
2) are comparable

with those obtained for the same Rayleigh number in

two-dimensional direct, time-dependent simulations

without MHD interactions in a square cavity [9,13].

5. Conclusions

Three-dimensional numerical simulations were con-

ducted for the MHD buoyancy-driven flow in a volu-

metrically heated cubic enclosure using a suitably

modified version of the CFX-4 software. The study was

motivated by the need for a better understanding of the

thermal-hydraulics phenomena occurring in water-

cooled lithium-lead breeder blankets for commercial

fusion reactors, where internal heat generation and

MHD interactions occur simultaneously. However, the

configuration studied is a basic one which may also be of

interest in different fields of physics and engineering. The

computational method adopted in the present study is

quite general and can easily be extended to more com-

plex configurations.

In the cubic enclosure, with respect to the fully de-

veloped flow problem studied in previous work, the

suppression of the flow field was stronger in the core,

and a complex three-dimensional flow (with secondary

motions) and current pattern was established in the fluid

domain. The effects of Hartmann number, wall con-

ductance ratio and Rayleigh number were investigated.

Increasing the Hartmann number tended to suppress

the convective motions and to make the circulation cells

more square in shape and more uniform spanwise;

MHD forces tended to align vorticity with the direction

of the magnetic field. Increasing the wall conductance

ratio cw from insulating to perfectly conducting walls

also resulted in a significant increase of MHD damping

effects. For poorly conducting walls, intense current jets

were predicted to flow through the side layers parallel to

B, as already observed in the fully developed study.

For M ¼ 100 and cw ¼ 10�2, as the Rayleigh number

increased from 105 to 107 the Nusselt numbers increased

from 
1 to 
2. This latter value is comparable to that

obtained for the same Rayleigh number in two-dimen-

sional direct simulations of free convection in an in-

ternally heated square cavity without MHD interactions,

for which a chaotic behaviour was observed. This sug-

gests the possibility of obtaining high convective heat

transfer rates, while keeping the flow within the steady

laminar range, by making use of MHD effects.

The related case of a cubic enclosure with differential

heating is the subject of a companion paper [4].
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